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General studles of the infliuence of a magnetic field on the convective lnsta-
bility of a conducting fluld shows [1] that all perturbations in the fluid
equilibrium develop monotonously; 1t occurs in weak flelds in any case.
Oscillatory perturbations , however, were not revealed at all, Nevertheless,
as 1s obvious from a serles of simple examples [2 to 4] the oscillatory
instability 1s possilble,

The purpose of the present paper is to clarify in a general form the con-
ditions on the arising of oscillatory instability, Such an investigation is
necessary, since 1n all three cited above pepers (determination of the begin-
ning of convection in plane horizontal [2] and vertical [3] layers and in a
cubic cavity [4]) the oscillatory solutlions were obtained only for special
boundary conditions on the boundaries of the fluid.

The method adopted here was first used by Landau and Lifshits [5] in study-
ing the intersection of electron terms of molecules,

1. In the gravity field

g =—¢s fr=1 (1.1)
and the external magnetic fleld
H = «yH, =1 (1.2)

& conducting fluld which occuples a cavity of an arbitrary shape 1s heated
from below in a manner that a constant temperature gradient 1s maintaineu
while the fluid 1is in equilibrium.

VIy=—§4A (1.3)
Assuming small perturbations in the fluld equlillibrium w , in the temper-
ature 7T and in the internal magnetic fleld h , are proportional to e‘Aﬁ

we obtain from the usual equations of magnetohydrodynamics the followilng
equations for perturbations:
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— M1 = V% + A (y¢) h 4 I'fT — V7, divu = 0, divh =20
(1.4)
— A = a*h + A (YU) u, — AT = b72T + Thu

All the quantities here are dimensionless. As unit quantitles, we have
chosen: length 1 (characteristic dimension of the cavity), time [% /v,
velocity v/ l, temperature vI'! (A / ag)’, magnetic rield vI-! (4mp)s. 1In
(1.4) appear the following dimensionless parameters:

Hl 2 c?
A=—-y I' = — (agd) _—— =X
v (4np)'s’ v (@8 4)%, ¢ =y O v
The number A determines the ratio of the magnetic energy density 5°/Bn
to the kinetic energy density of the fluid pu?/2 ~ pvZ/ 202 It does not
contain the electrlic conductivity e . The quantityzA./}fa is the Hartmann
number, and TI? 1s the Grasshof number.

At the boundary of the cavity, cut out of an infinite hard conducting
solid, the velocity of the fluid vanishes, while the magnetic fleld, the
temperature, the normal component of the heat flux and the tangential com-
ponent of the electric field are all continuous. The boundary conditions are
thus given as

u=0,7=7T°, h

I

h° at the boundary of the cavity

n xroth n X rot h®
n(xyT) = nx°yT°), ’<6 = pe (1.5)
I° =0, h°=0 at infinity
Here and in what follows, the small superscript circle denotes the values
of quantities 1in the solid (x 1s the thermal conductivity). These conditions
will aliow the use of Gauss's theorem to the entire space for 1lntegration;

trhe integrals on the surface of the cavity always vanish.

1ln this paper, we investigate the dependence of the spectrum of the decre-
ments X on the external fleld A and the temperature gradient T . The
perturbations are monotonous if Im i = O and they damp if Rer> O .,

2. Equations (1.4) may be written compactly if we introduce the 7-vector
¥ and the operators

u Vf 100 0107
o=[b]. wr=[y] s=lom] sl
T 0 00b 000

001 100
5o = [000], = [010] 2.1)
100 000

Systen. (1.4) may be written

M= Ly = f — ;7 — As, (Y7) ¥ — TBss¥, sve =0 (2.2)
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The operator [ 1s not self-conjugate, so that its elgenvalues may be
complex, and 1ts eigenfunctions may not be mutually orthogonal. They are
orthogonal to the eigenfunctions ¢ of the operator r*, the Hermitian con-
Jugate of 1 . For ¢ we have Equation

Mo = Lt = Vg — 5V + As, (Yv) 9 — Tfsso, seve =0 (2.3)
l.e.
L*AT)=L(—A,T (2.4)
Such "weak" non-Hermitian property permits to express § and ¢ by the
very same functions (ef 2.1): a

T
The vectors {{,} are orthogonal to the vectors {Pa} 1n the following sense:

(@a-p) = g{uaua + T,Ts — hghg) dV = 0 (hg 5 Ag)

(@) = § (ua? + To* — h?) dV = const @6

When A - O , the operator 1 analytically approaches a Hermitian oper-
at 1l.e. .
°rs L*(0,T) =L (0, T) 2.7

so that 1n the absence of an external magnetic field, oscillatory perturba-
tions do not exist. In [1] 1t was shown that shuch perturbations also do not
occur in weak magnetic filelds, 1.e. for small values of A all perturbations
are monotone, There exlist two types of monotonous perturbations [6]

u u

la 2a
A‘lay ‘pm = hla L] x?ay Waa = haa (a = O) 11 2) .- ) (2.8)
Tla Tza

In the solutlons of the first type
2 2 2
{n2av > @i+ 1 av

These soluticns may naturally be called "magnetic"™: as A ~ O, the velo-

city and temperature vanish in them and only the magnetlc fleld remains and
satlsfies the Maxwell equations

— AMohye = avthg, divhy, = 0 (2.9)

In the other perturbations, called "hydrodynamic"”,
2 2 2
Vel + 1 av > (n2av

In these solutions, as A - O , the magnetic fleld vanishes, and they
pass over continuously to the solutions of ordinary convection equations
without magnetic fleld

— Agallyy = 2uge + Fme — Vin

(2.10)
— gaTae = byToe + DPuge,  divug, = 0
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The criterion determining the type of the perturbtation is the sign of the
normalizing integral

((Pma'lpnﬁ) = S {umaunﬁ + Tma.TnB - hmuhnB) dV = (_)n 6mn(SaB
(m, n=1,2, a,B=0,1,2..) (2.11)

Oscillatory perturbatione appear for values of JA greater than some cri-
tical A,(r') . It is essential that they appear in pairs. In fact, from
the real character of the operator 1 follows that if ({i,y} 1s some com-
plex solution of Equation (2.2), then {A¥,4*} 1is also a solution of this
equation. The decrements of oscillatory perturbations y and w* at the
point A, coincide: ) = A* = A°, and for A < A, the perturbations them-
selves become two monotonous perturbations.

Thus, the necessity to study the confluence in the spectrum of the decre-
ments A(p,I’) arises. This study will be carried out according to the
method described in [5].

3, Assume that at the point (Ao,ro) , the two real decrements Kma and
AnB have near values. We shall attempt to make A, = xnﬁ, by varying the
parameters by ApA and AT ; we have

L(AT) =LAy To) + o AA + ST AT =L, + 1T (3.1)

Considering 1 as a pertutbation on the operator [, , we determine the
eigenfunctions and eigenvalues of Equation

M= (L, t ¥ (3.2)

by means of the method of the perturbation theory. The elgenfuncticr.s of
the "unperturbed" operator I, satisfy the equations

}\rmzﬂpma = Lo\pmay lnﬁ\pnﬁ = Lo"rnﬁ (3'3)
As a first approximation to the elgenfunctions at the point

(Ay + AA, T, + AT)

we use a linear combinatlon of the type

11) == cma\pma -+ C,.B\Pnp (3.4)
Substituting (3.4) into (3.2), we get
Cing (}“ - }"mz - H) "pma *\L cnﬂ (;‘ _ )"nﬁ - H) q:“ﬁ = O (3'5)

In the problem considered two cases may occur. Perturbations Y, and
wnﬂv whose decrements have the close values at the point (Ao,ro), may
velong (a) to one type (n =m) , or (b) to different types (ngm).

To begin, let us examine the flrst case, that id both '¢na and QMp are
either "magnetic" (n = 1) , or "hydrodynamic" (n=2) perturbations. By tasing
the inner product of (3.5) with ¢, and @ in turn (dropping the index n ),
we get two algebraic equations, which are solvable if
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()" (g — ) + T, o ~0 (3.6)
g, (=)o — 1) + Mgy
Here

Mg = (¢a- i) =
= — AA (0, (49) b + g (1) ha) &V — AT § (Tofup + Tepuy v (3.7)

From (3.7) 1t 1s seen that
Haﬁ = HBa (38)

(The matrix Il is determined in the mixed basis {Qg;V{y}, and therefore
(3.8) does not mean, of course, that II 1s Hermitian.)

By expanding the determinant (3.6), we find
A= 1/2 [xa + }"B + (_‘ )n (Haa + Hﬁﬂ)] i (39)

£V Ve The — A + (=) (Maw — Hge) 2 + I3

For the confluence of the decrements the expression under the radical must
be made zero. 8lnce this appears as the sum of two squares, the conditions for
confluence consist of the two equations

e — Ag 4 (=) (Tag — Hgg) = 0,  Igp =0 (3.10)

With two arbitrary parameters, ApA and aAl' , which determine the pertur-
bation 1 , these equations can always be satisfied. Consequently the decre-
ments of any two perturbations of the same type may intersect. Nothing of inter-
est, however, arises from thils, since such a confluence has no relation to an
oscillatory perturbation. The decrements determined by Formula (3.9) sepa-
rate after the confluence and remain real.

Ir Y, and 1YPg possess different symmetry, then [5] Haﬁ = 0, and from
the two conditions for confluence (3.10) only one remains. Therefore the
intersection of the surfaces Ay (A, I) and Ag (A, T) occurs along a 1line for
perturbations of opposite symmetry and at a point for those of the same sym-
metry.

4, It remains to consider the case when at the point (A, Iy) the close
values A]a and 125 are decrements of two perturbations of different type.
In the following the second subscript will be omitted. Multiplying (3.5) by
@, and o, we get a system of two equatlons, the condition of solvability of

which 1s
AM—2A—0 I3
1 n 1 -0 (4‘1)

—In Ao—A 4 My |

Here Il,; is determined by (3.7), so that II; = II;,. From this by
expanding the determinant we get (4‘2)

A= 1/2 (}"1 —}_ A’Z - Hll + H22) i V1/4 (}"1 - A’2 - nll - H22)2 - lez
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If 4, and y, have different symmetries, then Il,, = 0, and the expres-
sion under the radical in (4.2) is always nonnegative ; that 1s, a complex
A 1s impossible. The confluence of the decrements, which 1s possible here,
was discussed in Section 3,

The most interesting case is that where §, and ¢, have the same symmetry.
Then [I;,=£ 0, so that now under the radical is not a sum, as in (3.9), but a
difference of two squares, With the proper choices of AA and Al this
difference can be positive, negative, or equal to zero. Negative values of
the difference correspoid to two complex-conjugate decrements, that is, two
oscillatory perturbations with frequencies + Im) . With a change of sign
of the expression under the radical this pair cf osclilatory perturbations
goes over into two monotonous perturbations: one "magnetic" and one "hydro-
dynamic”. The condition for confluence of the decrements consists of Equa-

tion 1 ;

/4 (Ay — Ay — I}y — [Hy)? — 2 =0 (4.3)
that 1s, the surfaces A; (A, I') and A, (A, T') intersect along a line, Let us
determine the rule according which these decrements change 1n the neighbor-

hood of this line. If the point A, = Ay-+ AA, 'y = I'y+ AT 1ies on the
ilne of intersectlon of the decrements, then in the neighborhood of this point

A=A, +E=A+ A +E T=T,4+n=0T+ AT +n {44

Taking into account that Ay (A, I'y) =4, (A, T',) = A°, we get from (4.2)
for the values of the parameters in (4.4)

A= A° + VBt + Dy (B, D = const) {4.5)

Thus, near (A, I' ) the frequency of oscillations is

VBWA —A) +D(T —T,) (4.6)

Thus the reason for the appearance of oscillatory perturbatlons 1s the
confluence of the decrements of monotonous perturbations of different type,
but the same symmetry. For this case the upper portion of Fig.: shows the
relief sections of the function A (A?,I®) for four different planes = const.
To the right of the point of confluence of the "magnetic” and "hydrodynamic
decrements appear two complex conjugate % . On the Fig.l their real parts
are designated.

5. The boundary value problem (1.4) with A = O breaks up into two prob-
lems (2.9) and (2.10). Problem (2.10) has been investigated by Sorokin [7].
By the use of a varlational technlque he showed that witi the growth of T
all A,, are decreased. For T =T, (see the upper part of Fig.l) the decre-
ment l2 becomes zero. For T > I', the monotonous perturbation ¢, would be
strengthened, leading to instability.

The eigen numbers of Xla of the other problem (2.9) do not depend on T
at all. Therefore x,(o,ra) is a common polnt of all curves correspording
to different values of TI?,

In the presence of a magnetic field (A # O) two forms of convective insta-
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bility corresponding to monotonous and osc¢illatory perturbations, are possi-

ble.

A

In weak flelds, as long as A 1s less than some A°, equilibrium is
threatened only by monotonous perturbations,
and the critical value of T , above which the
equilibrium 18 unstable, 1ncreases with in-
creasing A . Oscillatory instability occurs
for A > A°.

Flg, 1

The lower part of Fig.l is taken from [3].
The solid lines on it designate the limits of
stability for plane vertical layer of fluid,
heated from below with a transverse magnetic

>N

field. Line ga determines the monotonous,
while »p gives the oscillatory threshold of
convection., The reglon of existence of oscil-
latory perturbations lies under the dotted
curve, This curve projects on the plane

Relx = O Just that line along which the sur-
faces A, (p%,r*) and 1,{(A%,r®) intersect,

—— e e e e i T
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